วันพุธที่ 12 กันยายน พ.ศ. 2555


  • คลื่นเสียง

    การสั่นและคลื่นเสียง
    SHOCK  WAVES หรือ ชอร์กเวฟ
              ชอร์กเวฟเกิดขึ้นจากแหล่งกำเนิดคลื่นเคลื่อนที่ได้เท่ากับความเร็วของคลื่นหรือเร็วกว่า  จะเกิดปรากฎการณ์ที่ว่าสันคลื่นไม่สามารถที่จะเคลื่อนที่ออกไปจากแหล่งกำเนิดเสียง โดยถ้าแหล่งกำเนิดเคลื่อนที่ได้เท่ากับความเร็วของคลื่น   สันคลื่นจะเกิดการซ้อนกัน  เสริมกันกลายเป็นแอมพลิจูดขนาดใหญ่เรียกว่า  ชอร์กเวฟ    และเมื่อแหล่งกำเนิดคลื่นเคลื่อนที่เร็วกว่าคลื่น  สันคลื่นจะฟอร์มตัวเป็นรูปกรวย  โดยมีมุม    =  sin-1(v/u)    อัตราส่วน  u/v  เรียกว่า เลขมัค  (Mach number)     ชอร์กเวฟเกิดขึ้นได้บ่อยมากในสถานการณ์ต่างๆกัน  ดังเช่น  โซนิกบูม  คือ ชอร์กเวฟประเภทหนึ่งของเครื่องบินที่วิ่งเร็วเหนือเสียง    คลื่นที่เกิดหลังเรือเร็วก็เป็นชอร์กเวฟอีกประเภทหนึ่ง    นอกอวกาศก็สามารถจะเกิดชอร์กเวฟได้  อย่างเช่น ลมสุริยะที่วิ่งด้วยความเร็วสูงเข้าชนสนามแม่เหล็กโลก  เป็นต้น
    a)  เมื่อแหล่งกำเนิดเสียงเคลื่อนที่ด้วยความเร็วเท่ากับความเร็วของคลื่น  สันคลื่นจะรวมกันอยู่ที่ยอดก่อให้เกิดชอร์กเวฟขึ้น  b)  ชอร์กเวฟเกิดขึ้นได้อีกกรณีหนึ่งเมื่อความเร็วของแหล่งกำเนิดเสียง u  มากกว่าความเร็วของคลื่น v  ในช่วงระยะเวลา หน้าคลื่นจะเคลื่อนที่ได้เป็นระยะ   แต่แหล่งกำเนิดคลื่นเคลื่อนที่ได้ระยะทางมากกว่า คือ         ชอร์กเวฟจะฟอร์มตัวเป็นรูปกรวย  โดยมีมุม   =  sin-1(v/u) 
       ค ลื่ นเ สี ย ง    
     
                  เสียงเกิดจาก การสั่นของวัตถุ เราสามารถทำให้วัตถุสั่นด้วยวิธีการ ดีด สี ตีและเป่า เมื่อแหล่งกำเนิดเสียงเกิดการสั่น จะทำให้โมเลกุลอากาศสั่นตามไปด้วยความถี่เท่ากับการสั่นของแหล่งกำเนิดเสียง เกิดเป็นช่วงอัดช่วงยายของโมเลกุลของอากาศ ซึ่งพลังงานของการสั่นจะแผ่ออกไปรอบๆแหล่งกำเนิดเสียง ตรงกลางส่วนอัดและตรงกลางส่วนขยายโมเลกุลอากาศจะไม่มีการเคลื่อนที่(การกระจัดเป็นศูนย์) / แต่ตรงกลางส่วนอัดความดันอากาศจะมากและตรงกลางส่วนขยายความดันอากาศจะน้อยมาก ดังนั้นคลื่นเสียงจึงเป็นคลื่นตามยาวเพราะโมเลกุลของอากาศจะสั่นในทิศเดียวกับทิศที่เสียงเคลื่อนที่ไป ความดังของเสียงจะขึ้นอยู่กับช่วงกว้างของการสั่น(แอมปลิจูด) ถ้าแอมปลิจูดมากเสียงจะดังมาก การเปลี่ยนความดันอากาศนี้สามารถเคลื่อนที่ไปข้างหน้า จนถึง หูของ ผู้ฟังทำให้ได้ยินเสียง
    รูปแสดงการเกิดคลื่นเสียงจากการสั่นของสายกีต้า เพียง 1 ทิศทาง  
    แหล่งกำเนิดคลื่นเคลื่อนที่ด้วยความเร็วเท่ากับความเร็วเสียง
    source  =   v  sound    (Mach 1  )  จ่อที่กำแพงเสียง
           เมื่อแหล่งกำเนิดเสียงเคลื่อนที่ด้วยความเร็วเท่าเสียง   (v s  =  v หรือ Mach  1  )   หน้าคลื่นทางขวาจะถูกอัดกันอยู่ทางด้านหน้า เป็นแนวเส้นโค้ง  ทำให้หน้าคลื่นเกิดการแทรกสอดแบบเสริมกัน  ความดันของคลื่นเพิ่มขึ้นอย่างมากมาย   เรียกว่า คลื่นกระแทก  ( shock wave)   
    ภาพบนคือลูกปืนที่วิ่งด้วยความเร็ว Mach 1.01  จะเห็นคลื่นกระแทกเป็นแนวโค้งหน้าลูกปืนอย่างชัดเจน  
     
    ชัค เยเกอร์ มนุษย์ผู้ฝ่ากำแพงเสียง
    ประสบอุบัติเหตุ
           เพียง วันก่อนขึ้นบินทดลองฝ่ากำแพงเสียง  ร้อยเอก ชัค เยเกอร์  แห่งกองทัพอากาศสหรัฐฯ ก็ประสบอุบัติเหตุจากการขี่ม้าจนกระดูกซี่โครงหัก ซี่  และถูกกระแทกจนเกือบหมดสติ   ตอนเช้าวันที่ 14 ตุลาคม ค.. 1947  ซึ่งเป็นวันรุ่งขึ้นหลังจากวันที่ประสบอุบัติเหตุ  หมอใช้เทปพันรอบตัวเขาเพื่อดามซี่โครงที่หักนั้นไว้ชั่วคราว  แขนขวาของเขาก็ยังปวดจนใช้การไม่ได้  แต่หากเขาปล่อยให้เจ้าหน้าที่กองทัพอากาศรู้เรื่องนี้เข้า  การบินทดลองซึ่งเป็นความลับสุดยอดครั้งนี้จะต้องเลื่อนออกไปทันที
          


  • คลื่นแสง 




    ภาพนี้คัดลอกมาจาก Nick Strobel's Astronomy Notes, http://www.astronomynotes.com/,
    copyright 1998-2002 by Nick Strobel.


วันพุธที่ 15 สิงหาคม พ.ศ. 2555

กฎของชาร์ล(Charles’s law)

วันจันทร์นี้ ครูไม่อยู่ให้นักเรียนชั้น ม.5/1 ทำรายงานใน blogger นะครับ หัวข้อ 

ความร้อน
-พลังงานความร้อน
-พลังงานความร้อนกับการเปลี่ยนสถานะของสาร
-สมดุลความร้อน
-การถ่ายเทความร้อน
-สมบัติของแก๊สในอดมคติ
-กฎของบอยด์(Robert Boyle)
-กฎของชาร์ล(Charles’s law)
-กฎของเกย์-ลูกแซก(Gay-Lussac’s law)
-แบบจำลองของแก๊ส
-ทฤษฎีจลน์ของแก๊ส
-การหาอุณหภูมิผสมและความดันผสมจากทฤษฎีจลน์ของแก๊ส
-พลังงานภายในระบบ
-การประยุกต์
-ตัวอย่างการคำนวณ

กฎของชาร์ล(Charles’s law)

กฎของชาร์ล (Charle’s Law)
ในการทดลองจุ่มกระบอกฉีดยาซึ่งบรรจุน้ำจำนวนหนึ่งลงในน้ำร้อน น้ำในกระบอกฉีดยาจะถูกดันออก ในทางตรงกันข้าม ถ้าจุ่มกระบอกฉีดยาลงในน้ำเย็น น้ำจากภายนอกจะเข้าไปแทนที่อากาศในกระบอกฉีดยา นั่นคือ การเพิ่มอุณหภูมิมีผลให้ปริมาตรของแก๊สเพิ่มขึ้น และการลดอุณหภูมิมีผลให้ปริมาตรของแก๊สลดลงด้วย แสดงว่าอุณหภูมิมีผลต่อการเปลี่ยนแปลงปิมาตรของแก๊ส การเปลี่ยนแปลงนี้ใช้ทฤษฎีจลน์ของแก๊สอธิบายได้ว่า การเพิ่มอุณหภูมิมีผลทำให้พลังงานจลน์เฉลี่ยของแก๊สเพิ่มขึ้น โมเลกุลของแก๊สจึงเคลื่อนที่เร็วขึ้น ทำให้โมเลกุลชนกันเองและชนผนังภาชนะมากขึ้น รวมทั้งพลังงานในการชนกันสูงขึ้นด้วย เป็นผลให้ความดันของแก๊สในกระบอกฉีดยาสูงขึ้นด้วย จึงดันน้ำออกจากกระบอกฉีดยาจนความดันของแก๊สภายในเท่ากับภายนอก จึงสังเกตเห็นว่าแก๊สในกระบอกฉีดยามีปริมาตรเพิ่มขึ้น ในกลับกันเมื่อลดอุณหภูมิ พลังงานจลน์เฉลี่ยของแก๊สในกระบอกฉีดยาจะลดลง ทำให้การชนกันเองระหว่างโมเลกุลของแก๊สและการชนผนังภาชนะน้อยลง รวมทั้งพลังงานในการชนลดลง ความดันของแก๊สในกระบอกฉีดยาจึงต่ำ อากาศภายนอกซึ่งมีความดันสูงกว่าจึงดันน้ำให้เข้าไปในกระบอกฉีดยา ความดันภายในจึงเพิ่มขึ้นจนเท่ากับความดันภายนอก จึงสังเกตเห็นว่าปริมาตรของแก๊สในกระบอกฉีดยาลดลงจนกระทั่งคงที่  จึงสรุปได้ว่าอุณหภูมิเป็นอีกปัจจัยหนึ่งที่มีผลต่อการเปลี่ยนปริมาตรของแก๊ส
 
Jacques Charles

จากผลการทดลองพบว่าเมื่อนำข้อมูลมาเขียนกราฟ จะได้กราฟเส้นตรงที่มีความชันคงที่ และทำให้คาดคะเนได้ว่า ถ้าลดอุณหภูมิของแก๊สลงเรื่อย ๆ แก๊สจะไม่มีปริมาตร หรือมีปริมาตรเป็นศูนย์ที่อุณหภูมิ –273OC แต่โดยความเป็นจริงแก๊สจะไม่สามารถมีปริมาตรเป็นศูนย์ได้ เนื่องจากเมื่อลดอุณหภูมิลงเรื่อย ๆ แก๊สจะเปลี่ยนสถานะเป็นของเหลวก่อนที่อุณหภูมิจะถึง –273OC  ซึ่งนักวิทยาศาสตร์ได้กำหนดให้อุณหภูมิ –273OC มีค่าเท่ากับ 0 เคลวิน (K)  โดยมีความสัมพันธ์ดังนี้


T   =   273 +  tOC


เมื่อทดลองศึกษาการเปลี่ยนปริมาตรของแก๊สเมื่อเปลี่ยนอุณหภูมิ พบความสัมพันธ์ระหว่างปริมาตรแก๊สกับอุณหภูมิในหน่วยองศาเซลเซียสและในหน่วยเคลวิน ดังตาราง

การทดลองครั้งที่
T ( OC )
T ( K )
V (cm3)
V/T (cm3/K)
1
10
283
100
0.35
2
50
323
114
0.35
3
100
373
132
0.35
4
200
473
167
0.35

จากตารางจะเห็นว่า เมื่อเปลี่ยนอุณหภูมิในหน่วยเซลเซียสเป็นหน่วยเคลวิน อัตราส่วนระหว่างปริมาตรกับอุณหภูมิเคลวินจะมีค่าคงที่ จ๊าก–อาเล็กซองเดร์–เซซา ชาร์ล (Jacqes A.C. Charles) นักวิทยาศาสตร์ชาวฝรั่งเศส ได้ศึกษาความสัมพันธ์ระหว่างอุณหภูมิกับปริมาตรแก๊ส ในปี ค.ศ.1778 (พ.ศ.2321) และสรุปความ สัมพันธ์เป็นกฎ เรียกว่ากฎของชาร์ล ซึ่งมีใจความดังนี้


เมื่อมวลและความดันของแก๊สคงที่ ปริมาตรของแก๊สจะแปรผันตรงกับอุณหภูมิเคลวิน

 
 

 

  
จากกฎของชาร์ล สามารถเขียนเป็นความสัมพันธ์ได้ดังนี้
                                  V   a    T
                                  V   =   kT
                                    =   k
         ถ้าให้  V1  เป็นปริมาตรของแก๊สที่อุณหภูมิ  T1
                  V2  เป็นปริมาตรของแก๊สที่อุณหภูมิ  T2
         เนื่องจากอัตราส่วนระหว่าง V กับ T คงที่  ดังนั้น
                  
                          V1/T1 = V2/T2
                                     
ตัวอย่างที่ 3     แก๊สชนิดหนึ่งมีปริมาตร 80 cm3  ที่อุณหภูมิ  45OC  แก๊สนี้จะมีปริมาตรเท่าใดที่อุณหภูมิ  0OC  ถ้าความดันคงที่
วิธีทำ                          V1   =   80   cm3 
                                 V2   =   ?
                                T1   =   273 + 45   =   318 K
                               T2   =   273 + 0     =   273 K
                                V1/T1 = V2/T2      
                            =   68.68                    cm3

ตัวอย่างที่ 4     แก๊สชนิดหนึ่งมีปริมาตร 30 ลิตร ที่อุณหภูมิ 25 OC  ถ้าความดันคงที่ แก๊สนี้จะมีปริมาตรเท่าใดเมื่ออุณหภูมิเปลี่ยนไปเป็น  100 OC
วิธีทำ                          V1   =   30   ลิตร
                                 V2   =   ?
                        T1   =   273 + 25    =      298 K
                          T2   =   273 + 100   =     373 K
                              
                                =   30.55               ลิตร
เกย์–ลูสแซกได้ทำการทดลองเพิ่มเติมต่อไป โดยให้ปริมาตรของแก๊สคงที่ เพื่อที่จะหาความสัมพันธ์ระหว่างความดันกับอุณหภูมิ ผลที่ได้คือ ความดันของแก๊สใด ๆ จะแปรผันตรงกับอุณหภูมิเมื่อปริมาตรคงที่  ดังนั้น
                                  P   a    T
                                  P   =   kT
                                    =   k
         และ                      =    =    

ตัวอย่างที่ 5     ถังใบหนึ่งถ้ามีแก๊สบรรจุอยู่จำนวนหนึ่ง มีความดัน 135 บรรยากาศ ที่อุณหภูมิ 20 OC  ถ้าให้แก๊สภายในถังร้อนขึ้นเป็น 85OC จะมีความดันเท่าใดเมื่อปริมาตรคงที่
วิธีทำ                             =  
                              =  
                                    P2   =  
                                           =   164.9      บรรยากาศ

การสะท้อนของคลื่น

การบ้าน 5/1 ให้ส่งเว็บบล็๋อก หัวข้อต่อไปนี้นะครับ
------------------------
คลื่นกล
-การจำแนกคลื่นกล
-คลื่นกับการส่งผ่านพลังงาน
-คลื่นบนเส้นเชือกและผิวน้ำ
-ส่วนประกอบของคลื่น
-อัตราเร็วของคลื่น
-การบอกตำแหน่งของการเคลื่อนที่แบบคลื่น
-ถาดคลื่น
-หน้าคลื่น
-คลื่นดลและคลื่นต่อเนื่อง
-การซ้อนทับของคลื่น
-สมบัติของคลื่น
-สมบัติของคลื่น
-การสะท้อนของคลื่น
-การหักเหของคลื่น
-การแทรกสอดของคลื่น
-คลื่นนิ่ง
-การสั่นพ้อง
-การเลี้ยวเบนของคลื่น


การสะท้อนของคลื่น

สมบัติการสะท้อนของคลื่น

สมบัติของคลื่น

คลื่นต้องมีสมบัติครบทั้ง 4 ข้อ ได้แก่
               1.  การสะท้อนกลับ ( Reflection )
               2.  การหักเห (Refraction)
               3.  การแพร่กระจายคลื่น (Diffraction )
               4.  การแทรกสอดของคลื่น ( Interference )

1. การสะท้อนของคลื่น(reflection) 

การสะท้อนของคลื่นเป็นปรากฏการณ์ที่สำคัญประการหนึ่งของคลื่น  ถือได้ว่าเป็นสมบัติของคลื่นอย่างหนึ่ง  จะเกิดขึ้นเมื่อคลื่นเคลื่อนที่ไปพบสิ่งกีดขวาง  หรือเปลี่ยนตัวกลางในการเคลื่อนที่  โดยคลื่นที่เคลื่อนที่ไปกระทบสิ่งกีดขวางเรียกว่า คลื่นตกกระทบ และคลื่นที่สะท้อนออกมาเรียกว่าคลื่นสะท้อน  การสะท้อนของคลื่นต้องเป็นไปตามกฏการสะท้อนของคลื่น ดังนี้



กฏการสะท้อนคลื่น
1. มุมตกกระทบเท่ากับมุมสะท้อนเสมอ
2. รังสีตกกระทบ เส้นปกติ รังสีสะท้อน อยู่ในระนาบเดียวกัน

ผลของการสะท้อนของคลื่นที่ควรทราบ คือ

1. ความถี่ของคลื่นสะท้อนมีค่าเท่ากับความถี่ของคลื่นตกกระทบ
2. อัตราเร็วและความยาวคลื่นของคลื่นสะท้อนมีค่าเท่ากับอัตราเร็วและความยาวคลื่นของคลื่นตกกระทบ
3. ถ้าการสะท้อนไม่สูญเสียพลังงาน  จะได้แอมพลิจูดของคลื่นสะท้อนมีค่าเท่ากับแอมพลิจูดของคลื่นตกกระทบ

การสะท้อนของคลื่นผิวน้ำ  

คลื่นสะท้อนเป็นแบบปลายอิสระ(เฟสของคลื่นสะท้อนจะไม่เปลี่ยนแปลง)

(ก) การสะท้อนของคลื่นหน้าตรง กับผิวสะท้อนตรง  จะได้คลื่นสะท้อนหน้าตรง
(ข) หน้าคลื่นวงกลมตกกระทบกับวัตถุผิวสะท้อนตรง  ได้หน้าคลื่นสะท้อนเป็นหน้าคลื่นวงกลม
(ค) หน้าคลื่นตรง ตกกระทบผิวสะท้อนโค้งนูน  ได้คลื่นสะท้อนเป็นหน้าคลื่นวงกลม


(ง) หน้าคลื่นวงกลม ตกกระทบผิวสะท้อนโค้งนูน  ได้คลื่นสะท้อนเป็นหน้าคลื่นวงกลม


(จ) หน้าคลื่นตรง ตกกระทบผิวสะท้อนโค้งเว้า(พาราโบลา)   ได้หน้าคลื่นสะท้อนวงกลมแผ่ออกจากจุดโฟกัสของโค้งพาราโบลา

(ฉ) หน้าวงกลม กำเนิดจากจุดโฟกัสของโค้งพาราโบลา  ตกกระทบผิวสะท้อนโค้งเว้า(พาราโบลา)   ได้หน้าคลื่นสะท้อนเป็นคลื่นหน้าตรง (ลักษณะตรงกันข้ามกับ หัวข้อ (จ)  )

การสะท้อนคลื่นในเส้นเชือก

(ก) การสะท้อนของคลื่นในเส้นเชือกปลายอิสระ(คล้องปลายไว้หลวมๆ) คลื่นสะท้อนจะมีเฟสเหมือนเฟสของคลื่นตกกระทบ

คลื่นสะท้อนและคลื่นตกกระทบเฟสไม่เปลี่ยนแปลง



คลื่นสะท้อนและคลื่นตกกระทบเฟสไม่เปลี่ยนแปลง

(ข) การสะท้อนของคลื่นในเส้นเชือกปลายตรึงแน่น(มัดปลาย ไว้แน่น) คลื่นสะท้อนจะมีเฟสตรงกันข้ามกับเฟสของคลื่นตกกระทบ


คลื่นเชือกสะท้อนแบบปลายตรึง เฟสเปลี่ยนไป 180 องศา

คลื่นสะท้อน เฟสเปลี่ยนแปลงไปเป็นเฟสตรงกันข้าม(เปลี่ยนไป 180 องศา)

(ค) การสะท้อนของเชือกสองเส้นที่ต่อกัน

1. คลื่นจากเชือกเส้นเล็กไปยังเชือกเส้นใหญ่  จะสะท้อนกลับมีเฟสตรงกันข้ามและแอมปลิจูดลดลง

 2. คลื่นจากเชือกเส้นใหญ่ไปยังเชือกเส้นเล็ก  จะสะท้อนกลับมีเฟสเหมือนเดิมและแอมปลิจูดลดลง

กิจกรรม :